Table of Contents
PART 1 INTRODUCTION TO STATISTICS
1.0 Statistics and samples
1.1 What is statistics?
1.2 Sampling populations
1.3 Types of data and variables
1.4 Frequency distributions and probability distributions
1.5 Types of studies
1.6 Summary
Interleaf 1 Correlation does not require causation
2.0 Displaying data
2.1 Guidelines for effective graphs
2.2 Showing data for one variable
2.3 Showing association between two variables and differences between groups
2.4 Showing trends in time and space
2.5 How to make good tables
2.6 How to make data files
2.7 Summary
3.0 Describing data
3.1 Arithmetic mean and standard deviation
3.2 Median and interquartile range
3.3 How measures of location and spread compare
3.4 Cumulative frequency distribution
3.5 Proportions
3.6 Summary
3.7 Quick Formula Summary
4.0 Estimating with uncertainty
4.1 The sampling distribution of an estimate
4.2 Measuring the uncertainty of an estimate
4.3 Confidence intervals
4.4 Error bars
4.5 Summary
4.6 Quick Formula Summary
Interleaf 2 Pseudoreplication
5.0 Probability
5.1 The probability of an event
5.2 Venn Diagrams
5.3 Mutually exclusive events
5.4 Probability distributions
5.5 Either this or that: adding probabilities
5.6 Independence and the multiplication rule
5.7 Probability trees
5.8 Dependent events
5.9 Conditional probability and Bayes’ theorem
5.10 Summary
6.0 Hypothesis testing
6.1 Making and using hypotheses
6.2 Hypothesis testing: an example
6.3 Errors in hypothesis testing
6.4 When the null hypothesis is not rejected
6.5 One-sided tests
6.6 Hypothesis testing versus confidence intervals
6.7 Summary
Intereaf 3 Why statistical significance is not the same as biological importance
PART 2 PROPORTIONS AND FREQUENCIES
7.0 Analyzing proportions
7.1 The binomial distribution
7.2 Testing a proportion: the binomial test
7.3 Estimating proportions
7.4 Deriving the binomial distribution
7.5 Summary
7.6 Quick Formula Summary
Interleaf 4 Biology and the history of statistics
8.0 Fitting probability models to frequency data
8.1 X^2 goodness-of-fit test: the proportional model
8.2 Assumptions of the X^2 goodness-of-fit test
8.3 Goodness-of-fit tests when there are only two categories
8.4 Random in space or time: the Poisson distribution
8.5 Summary
8.6 Quick Formula Summary
Interleaf 5 Making a plan
9.0 Contingency analysis: Associations between categorical variables
9.1 Associating two categorical variables
9.2 Estimating association in 2 × 2 tables: relative risk
9.3 Estimating association in 2×2 tables: the odds ratio
9.4 The x^2 contingency test
9.5 Fisher’s exact test
9.6 Summary
9.7 Quick Formula Summary
PR1 Review Problems 1
PART 3 COMPARING NUMERICAL VALUES
10.0 The normal distribution
10.1 Bell-shaped curves and the normal distribution
10.2 The formula for the normal distribution
10.3 Properties of the normal distribution
10.4 The standard normal distribution and statistical tables
10.5 The normal distribution of sample means
10.6 Central limit theorem
10.7 Normal approximation to the binomial distribution
10.8 Summary
10.9 Quick Formula Summary
Interleaf 6 Controls in medical studies
11.0 Inference for a normal population
11.1 The t-distribution for sample means
11.2 The confidence interval for the mean of a sample distribution
11.3 The one-sample t-test
11.4 Assumptions of the one-sample t-test
11.5 Estimating the standard deviation and variance of a normal population
11.6 Summary
11.7 Quick Formula Summary
12.0 Comparing two means
12.1 Paired sample versus two independent samples
12.2 Paired comparison of means
12.3 Two-sample comparison of means
12.4 Using the correct sampling units
12.5 The fallacy of indirect comparison
12.6 Interpreting overlap of confidence intervals
12.7 Comparing variances
12.8 Summary
12.9 Quick Formula Summary
Interleaf 7 Which test should I use?
Reviews
There are no reviews yet.